Publication year
2011Source
Proceedings of the National Academy of Sciences USA, 108, 35, (2011), pp. 14620-5ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Orthopaedics
Radiation Oncology
Journal title
Proceedings of the National Academy of Sciences USA
Volume
vol. 108
Issue
iss. 35
Page start
p. 14620
Page end
p. 5
Subject
ONCOL 3: Translational research; ONCOL 5: Aetiology, screening and detectionAbstract
Hypoxia has been shown to be an important microenvironmental parameter influencing tumor progression and treatment efficacy. Patient guidance for hypoxia-targeted therapy requires evaluation of tumor oxygenation, preferably in a noninvasive manner. The aim of this study was to evaluate and validate the uptake of [(18)F]HX4, a novel developed hypoxia marker for PET imaging. A heterogeneous accumulation of [(18)F]HX4 was found within rat rhabdomyosarcoma tumors that was significantly (P < 0.0001) higher compared with the surrounding tissues, with temporal increasing tumor-to-blood ratios reaching a plateau of 7.638 +/- 0.926 and optimal imaging properties 4 h after injection. [(18)F]HX4 retention in normal tissues was found to be short-lived, homogeneous and characterized by a fast progressive temporal clearance. Heterogeneity in [(18)F]HX4 tumor uptake was analyzed based on 16 regions within the tumor according to the different orthogonal planes at the largest diameter. Validation of heterogeneous [(18)F]HX4 tumor uptake was shown by a strong and significant relationship (r = 0.722; P < 0.0001) with the hypoxic fraction as calculated by the percentage pimonidazole-positive pixels. Furthermore, a causal relationship with tumor oxygenation was established, because combination treatment of nicotinamide and carbogen resulted in a 40% reduction (P < 0.001) in [(18)F]HX4 tumor accumulation whereas treatment with 7% oxygen breathing resulted in a 30% increased uptake (P < 0.05). [(18)F]HX4 is therefore a promising candidate for noninvasive detection and evaluation of tumor hypoxia at a macroscopic level.
This item appears in the following Collection(s)
- Academic publications [234108]
- Faculty of Medical Sciences [89175]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.