
Fulltext:
96334.pdf
Embargo:
until further notice
Size:
279.3Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2011Source
Behavioural Brain Research, 223, 1, (2011), pp. 169-75ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Cognitive Neuroscience
Anatomy
Journal title
Behavioural Brain Research
Volume
vol. 223
Issue
iss. 1
Page start
p. 169
Page end
p. 75
Subject
DCN 2: Functional NeurogenomicsAbstract
A well-known example for gene x environment interactions in psychiatry is the one involving the low activity (s) allelic variant of the serotonin transporter (5-HTT) promoter polymorphism (5-HTTLPR) that in the context of stress increases risk for depression. In analogy, 5-HTT knockout rodents are highly responsive to early life, but also adult external stressors, albeit conflicting data have been obtained. In our study on emotion and cognition using homozygous 5-HTT knockout (5-HTT(-/-)) and wild-type (5-HTT(+/+)) rats we have been confronted with animal facility construction, which were associated with severe lifetime stress (noise and vibrations). To assess the impact of construction stress on well-established 5-HTT(-/-) rat phenotypes we conducted ad hoc analyses of 5-HTT(-/-) and 5-HTT(+/+) rats that grew up before and during the construction. The reproductive capacity of the parents of the experimental 5-HTT(+/-) rats was significantly decreased. Further, 5-HTT(-/-) anxiety-related phenotypes in the elevated plus maze and social interaction tests were abolished after construction noise exposure, due to increased anxiety in 5-HTT(+/+) rats and decreased anxiety in 5-HTT(-/-) rats (social interaction test only). In addition, reversal learning was improved in 5-HTT(+/+) and, to a milder extent, decreased in 5-HTT(-/-) rats. Finally, construction stress genotype-independently increased behavioural despair in the forced swim test. In conclusion, severe construction stress induces 5-HTT genotype-dependent 'for-better-and-for-worse' effects. These data importantly contribute to the understanding of 5-HTT gene x environment interactions and show the risk of losing genotype effects by construction stress.
This item appears in the following Collection(s)
- Academic publications [227696]
- Electronic publications [108794]
- Faculty of Medical Sciences [87091]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.