From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex
Publication year
2011Source
Journal of Physical Chemistry B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical, 115, 26, (2011), pp. 8609-21ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Rheumatology
Journal title
Journal of Physical Chemistry B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical
Volume
vol. 115
Issue
iss. 26
Page start
p. 8609
Page end
p. 21
Subject
NCEBP 2: Evaluation of complex medical interventions N4i 4: Auto-immunity, transplantation and immunotherapyAbstract
The experimental observation of long-lived quantum coherences in the Fenna-Matthews-Olson (FMO) light-harvesting complex at low temperatures has challenged general intuition in the field of complex molecular systems and provoked considerable theoretical effort in search of explanations. Here we report on room-temperature calculations of the excited-state dynamics in FMO using a combination of molecular dynamics simulations and electronic structure calculations. Thus we obtain trajectories for the Hamiltonian of this system which contains time-dependent vertical excitation energies of the individual bacteriochlorophyll molecules and their mutual electronic couplings. The distribution of energies and couplings is analyzed together with possible spatial correlations. It is found that in contrast to frequent assumptions the site energy distribution is non-Gaussian. In a subsequent step, averaged wave packet dynamics is used to determine the exciton dynamics in the system. Finally, with the time-dependent Hamiltonian, linear and two-dimensional spectra are determined. The thus-obtained linear absorption line shape agrees well with experimental observation and is largely determined by the non-Gaussian site energy distribution. The two-dimensional spectra are in line with what one would expect by extrapolation of the experimental observations at lower temperatures and indicate almost total loss of long-lived coherences.
This item appears in the following Collection(s)
- Academic publications [232036]
- Faculty of Medical Sciences [89029]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.