SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway.

Fulltext:
81613.pdf
Embargo:
until further notice
Size:
355.5Kb
Format:
PDF
Description:
publisher's version
Publication year
2009Source
Human Molecular Genetics, 18, 12, (2009), pp. 2257-65ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Human Genetics
Physiology
Radboud Universitair Medisch Centrum
Journal title
Human Molecular Genetics
Volume
vol. 18
Issue
iss. 12
Page start
p. 2257
Page end
p. 65
Subject
DCN 2: Functional Neurogenomics; IGMD 3: Genomic disorders and inherited multi-system disorders; IGMD 9: Renal disorder; NCMLS 5: Membrane transport and intracellular motility; NCMLS 6: Genetics and epigenetic pathways of diseaseAbstract
Pigmented hypertrichotic dermatosis with insulin-dependent diabetes (PHID) syndrome is a recently described autosomal recessive disorder associated with predominantly antibody negative, insulin-dependent diabetes mellitus. In order to identify the genetic basis of PHID and study its relationship with glucose metabolism, we performed homozygosity mapping in five unrelated families followed by candidate gene sequencing. Five loss-of-function mutations were identified in the SLC29A3 gene which encodes a member of a highly conserved protein family that transports nucleosides, nucleobases and nucleoside analogue drugs, hENT3. We show that PHID is allelic with a related syndrome without diabetes mellitus, H syndrome. The interaction of SLC29A3 with insulin signaling pathways was then studied using an established model in Drosophila melanogaster. Ubiquitous knockdown of the Drosophila ortholog of hENT3, dENT1 is lethal under stringent conditions; whereas milder knockdown induced scutellar bristle phenotypes similar to those previously reported in the knockdown of the Drosophila ortholog of the Islet gene. A cellular growth assay showed a reduction of cell size/number which could be rescued or enhanced by manipulation of the Drosophila insulin receptor and its downstream signaling effectors, dPI3K and dAkt. In summary, inactivating mutations in SLC29A3 cause a syndromic form of insulin-dependent diabetes in humans and in Drosophila profoundly affect cell size/number through interactions with the insulin signaling pathway. These data suggest that further investigation of the role of SLC29A3 in glucose metabolism is a priority for diabetes research.
This item appears in the following Collection(s)
- Academic publications [227881]
- Electronic publications [107344]
- Faculty of Medical Sciences [86219]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.