
Fulltext:
81027.pdf
Embargo:
until further notice
Size:
686.1Kb
Format:
PDF
Description:
publisher's version
Publication year
2009Source
The Journal of Nuclear Medicine (1978), 50, 6, (2009), pp. 991-8ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Nuclear Medicine
Journal title
The Journal of Nuclear Medicine (1978)
Volume
vol. 50
Issue
iss. 6
Page start
p. 991
Page end
p. 8
Subject
NCMLS 2: Immune Regulation; ONCOL 3: Translational research; ONCOL 5: Aetiology, screening and detectionAbstract
Small biomolecules are typically radiolabeled with (18)F by binding it to a carbon atom, a process that usually is designed uniquely for each new molecule and requires several steps and hours to produce. We report a facile method wherein (18)F is first attached to aluminum as Al(18)F, which is then bound to a chelate attached to a peptide, forming a stable Al(18)F-chelate-peptide complex in an efficient 1-pot process. METHODS: For proof of principle, this method was applied to a peptide suitable for use in a bispecific antibody pretargeting method. A solution of AlCl(3).6H(2)O in a pH 4.0 sodium-acetate buffer was mixed with an aqueous solution of (18)F to form the Al(18)F complex. This was added to a solution of IMP 449 (NOTA-p-Bn-CS-d-Ala-d-Lys(HSG)-d-Tyr-d-Lys(HSG)-NH(2)) (NOTA-p-Bn-CS is made from S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid; HSG is histamine-succinyl-glycine) and heated to 100 degrees C for 15 min. In vitro and in vivo stability and targeting ability of the Al(18)F-IMP 449 were examined in nude mice bearing LS174T human colonic tumors pretargeted with an anti-CEACAM5 bispecific antibody (TF2). RESULTS: The radiolabeled peptide was produced in 5%-20% yield with an estimated specific activity of 18,500-48,100 GBq (500-1,300 Ci)/mmol. The Al(18)F-IMP 449 was stable for 4 h in serum in vitro, and in animals, activity isolated in the urine 30 min after injection was bound to the peptide. Nonchelated Al(18)F had higher tissue uptake, particularly in the bones, than the chelated Al(18)F-IMP 449, which cleared rapidly from the body by urinary excretion. Tumor uptake was 30-fold higher with TF2-pretargeted Al(18)F-IMP 449 than with the peptide alone. Dynamic PET showed tumor localization within 30 min and rapid and thorough clearance from the body. CONCLUSION: The ability to bind highly stable Al(18)F to metal-binding ligands is a promising new labeling method that should be applicable to a diverse array of molecules for PET.
This item appears in the following Collection(s)
- Academic publications [227693]
- Electronic publications [107311]
- Faculty of Medical Sciences [86198]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.