Publication year
2008Source
Proceedings of the National Academy of Sciences USA, 105, 19, (2008), pp. 6840-5ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Dentistry
Journal title
Proceedings of the National Academy of Sciences USA
Volume
vol. 105
Issue
iss. 19
Page start
p. 6840
Page end
p. 5
Subject
NCMLS 1: Immunity, infection and tissue repairAbstract
Embryonic stem cells can provide an unlimited supply of pluripotent cells for tissue engineering applications. Bone tissue engineering by directly differentiating ES cells (ESCs) into osteoblasts has been unsuccessful so far. Therefore, we investigated an alternative approach, based on the process of endochondral ossification. A cartilage matrix was formed in vitro by mouse ESCs seeded on a scaffold. When these cartilage tissue-engineered constructs (CTECs) were implanted s.c., the cartilage matured, became hypertrophic, calcified, and was ultimately replaced by bone tissue in the course of 21 days. Bone aligning hypertrophic cartilage was observed frequently. Using various chondrogenic differentiation periods in vitro, we demonstrated that a cartilage matrix is required for bone formation by ESCs. Chondrogenic differentiation of mesenchymal stem cells and articular chondrocytes showed that a cartilage matrix alone was not sufficient to drive endochondral bone formation. Moreover, when CTECs were implanted orthotopically into critical-size cranial defects in rats, efficient bone formation was observed. We report previously undescribed ESC-based bone tissue engineering under controlled reproducible conditions. Furthermore, our data indicate that ESCs can also be used as a model system to study endochondral bone formation.
This item appears in the following Collection(s)
- Academic publications [246262]
- Faculty of Medical Sciences [93282]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.