High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells.
Publication year
2008Source
British Journal of Nutrition, 99, 4, (2008), pp. 703-8ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Health Evidence
Former Organization
Centrum voor Staat en Recht
Epidemiology, Biostatistics & HTA
Journal title
British Journal of Nutrition
Volume
vol. 99
Issue
iss. 4
Page start
p. 703
Page end
p. 8
Subject
NCEBP 1: Molecular epidemiology; ONCOL 1: Hereditary cancer and cancer-related syndromes; ONCOL 3: Translational research; ONCOL 5: Aetiology, screening and detection; UMCN 1.2: Molecular diagnosis, prognosis and monitoringAbstract
Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.
This item appears in the following Collection(s)
- Academic publications [242527]
- Faculty of Medical Sciences [92283]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.