Tissue engineering of the meniscus.

Fulltext:
59235.pdf
Embargo:
until further notice
Size:
778.5Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2004Source
Biomaterials, 25, 9, (2004), pp. 1523-32ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Orthopaedics
Journal title
Biomaterials
Volume
vol. 25
Issue
iss. 9
Page start
p. 1523
Page end
p. 32
Subject
UMCN 4.3: Tissue engineering and reconstructive surgeryAbstract
Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new treatment modalities for repair of meniscus tears and eventually will enable the replacement of a whole meniscus by a tissue-engineered construct.Many questions remain to be answered before the final goal, a tissue-engineered meniscus is available for clinical implementation. These questions are related to the selection of an optimal cell type, the source of the cells, the need to use growth factor(s) and the type of scaffold that can be used for stimulation of differentiation of cells into tissues with optimal phenotypes. Particularly in a loaded, highly complex environment of the knee, optimal mechanical properties of such a scaffold seem to be of utmost importance.With respect to cells, autologous meniscus cells seems the optimal cell source for tissue engineering of meniscus tissue, but their availability is limited. Therefore research should be stimulated to investigate the suitability of other cell sources for the creation of meniscus tissue. Bone marrow stroma cells could be useful since it is well known that they can differentiate into bone and cartilage cells. With respect to growth factors, TGF-beta could be a suitable growth factor to stimulate cells into a fibroblastic phenotype but the problems of TGF-beta introduced into a joint environment should then be solved. Polyurethane scaffolds with optimal mechanical properties and with optimal interconnective macro-porosity have been shown to facilitate ingrowth and differentiation of tissue into fibro-cartilage. However, even these materials cannot prevent cartilage degeneration in animal models. Surface modification and/or seeding of cells into the scaffolds before implantation may offer a solution for this problem in the future.This review focuses on a number of specific questions; what is the status of the development of procedures for lesion healing and how far are we from replacing the entire meniscus by a (tissue-engineered) prosthesis. Subquestions related to the type of scaffold used are: is the degree of tissue ingrowth and differentiation related to the initial mechanical properties and if so, what is the influence of those properties on the subsequent remodelling of the tissue into fibro-cartilage; what is the ideal pore geometry and what is the optimal degradation period to allow biological remodelling of the tissue in the scaffold. Finally, we will finish with our latest results of the effect of tear reconstruction and the insertion of prostheses on articular cartilage degradation.
This item appears in the following Collection(s)
- Academic publications [234289]
- Electronic publications [117279]
- Faculty of Medical Sciences [89180]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.