Publication year
2007Source
Anaesthesia and Intensive Care, 35, 5, (2007), pp. 679-94ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Intensive Care
Journal title
Anaesthesia and Intensive Care
Volume
vol. 35
Issue
iss. 5
Page start
p. 679
Page end
p. 94
Subject
IGMD 7: Iron metabolism; N4i 1: Pathogenesis and modulation of inflammation; UMCN 4.1: Microbial pathogenesis and host defenseAbstract
Septic shock is characterised by vasodilation, myocardial depression and impaired microcirculatory blood flow, resulting in redistribution of regional blood flow. Animal and human studies have shown that gastrointestinal mucosal blood flow is impaired in septic shock. This is consistent with abnormalities found in many other microcirculatory vascular beds. Gastrointestinal mucosal microcirculatory perfusion deficits have been associated with gut injury and a decrease in gut barrier function, possibly causing augmentation of systemic inflammation and distant organ dysfunction. A range of techniques have been developed and used to quantify these gastrointestinal perfusion abnormalities. The following techniques have been used to study gastrointestinal perfusion in humans: tonometry, laser Doppler flowmetry, reflectance spectrophotometry, near-infrared spectroscopy, orthogonal polarisation spectral imaging, indocyanine green clearance, hepatic vein catheterisation and measurements of plasma D-lactate. Although these methods share the ability to predict outcome in septic shock patients, it is important to emphasise that the measurement results are not interchangeable. Different techniques measure different elements of gastrointestinal perfusion. Gastric tonometry is currently the most widely used technique because of its non-invasiveness and ease of use. Despite all the recent advances, the usefulness of gastrointestinal perfusion parameters in clinical decision-making is still limited. Treatment strategies specifically aimed at improving gastrointestinal perfuision have failed to actually correct mucosal perfusion abnormalities and hence not shown to improve important clinical endpoints. Current and future treatment strategies for septic shock should be tested for their effects on gastrointestinal perfusion; to further clarify its exact role in patient management, and to prevent therapies detrimental to gastrointestinal perfusion being implemented.
This item appears in the following Collection(s)
- Academic publications [226902]
- Faculty of Medical Sciences [86456]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.