Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent Streptococcus pneumoniae: evidence for a distinct response to encapsulated strains.
Publication year
2007Source
Infection and Immunity, 75, 11, (2007), pp. 5489-99ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Paediatrics - OUD tm 2017
Human Genetics
Journal title
Infection and Immunity
Volume
vol. 75
Issue
iss. 11
Page start
p. 5489
Page end
p. 99
Subject
N4i 1: Pathogenesis and modulation of inflammation; N4i 4: Auto-immunity, transplantation and immunotherapy; NCMLS 1: Infection and autoimmunity; UMCN 4.1: Microbial pathogenesis and host defenseAbstract
Infection of the human host by Streptococcus pneumoniae begins with colonization of the nasopharynx, which is mediated by the adherence of bacteria to the respiratory epithelium. Several studies have indicated an important role for the pneumococcal capsule in this process. Here, we used microarrays to characterize the in vitro transcriptional response of human pharyngeal epithelial Detroit 562 cells to the adherence of serotype 2 encapsulated strain D39, serotype 19F encapsulated strain G54, serotype 4 encapsulated strain TIGR4, and their nonencapsulated derivatives (Deltacps). In total, 322 genes were found to be upregulated in response to adherent pneumococci. Twenty-two genes were commonly induced, including those encoding several cytokines (e.g., interleukin 1beta [IL-1beta] and IL-6), chemokines (e.g., IL-8 and CXCL1/2), and transcriptional regulators (e.g., FOS), consistent with an innate immune response mediated by Toll-like receptor signaling. Interestingly, 85% of genes were induced specifically by one or more encapsulated strains, suggestive of a capsule-dependent response. Importantly, purified capsular polysaccharides alone had no effect. Over a third of these loci encoded products predicted to be involved in transcriptional regulation and signal transduction, in particular mitogen-activated protein kinase signaling pathways. Real-time PCR of a subset of 10 genes confirmed the microarray data and showed a time-dependent upregulation of, especially, innate immunity genes. The downregulation of epithelial genes was most pronounced upon adherence of D39Deltacps, as 68% of the 161 genes identified were repressed only by this nonencapsulated strain. In conclusion, we identified a subset of host genes specifically induced by encapsulated strains during in vitro adherence and have demonstrated the complexity of interactions occurring during the initial stages of pneumococcal infection.
This item appears in the following Collection(s)
- Academic publications [243984]
- Electronic publications [130695]
- Faculty of Medical Sciences [92811]
- Open Access publications [104970]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.