
Fulltext:
52412.pdf
Embargo:
until further notice
Size:
304.0Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2007Source
American Journal of Medical Genetics Part C : Seminars in Medical Genetics, 145, 4, (2007), pp. 383-92ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Human Genetics
Journal title
American Journal of Medical Genetics Part C : Seminars in Medical Genetics
Volume
vol. 145
Issue
iss. 4
Page start
p. 383
Page end
p. 92
Subject
DCN 2: Functional Neurogenomics; IGMD 3: Genomic disorders and inherited multi-system disorders; UMCN 5.1: Genetic defects of metabolismAbstract
The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invariably have severe hypotonia with speech and gross motor delay. The facial gestalt is distinct and features absolute or relative micro- or brachycephaly, hypertelorism, synophrys, and/or arched eyebrows, mid-face hypoplasia, a short nose with upturned nares, a protruding tongue with everted lower lip and down-turned corners of the mouth. Approximately half of affected individuals have congenital heart defects (primarily ASD or VSD). A significant minority have epilepsy and/or behavioral and sleep disturbances. A variety of other major and minor eye, ear, genital, and limb anomalies have been reported. Most patients have sub-microscopic deletions of the subtelomere region of chromosome 9q34.3 that range from <400 kb to >3 Mb. The 9qSTDS is caused by haplo-insufficiency of EHMT1, a gene whose protein product (Eu-HMTase1) is a histone H3 Lys 9 (H3-K9) methyltransferase. This was established by identification of three patients with features of the syndrome and either mutations or a balanced translocation in EHMT1. H3-K9 histone methylation is restricted to the euchromatin of mammals and functions to silence individual genes. Deletion size does not correlate with the severity of the 9qSTDS since patients with mutations in EHMT1 are as severely affected as those with submicroscopic deletions. Patients clinically suspected of having the 9qSTDS but with normal subtelomere deletion testing by FISH or MLPA should be considered for detailed 9q MLPA analysis and/or sequencing of EHMT1. EHMT1 is another example in the growing list of genes responsible for brain development that appear to play a role in chromatin remodeling. Published 2007 Wiley-Liss, Inc.
This item appears in the following Collection(s)
- Academic publications [229097]
- Electronic publications [111496]
- Faculty of Medical Sciences [87745]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.