Fulltext:
51393.pdf
Embargo:
until further notice
Size:
361.6Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2006Source
Journal of Physiology, 570, Pt 1, (2006), pp. 113-24ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Rehabilitation
SW OZ DCC BO
Former Organization
SW OZ NICI CO
Journal title
Journal of Physiology
Volume
vol. 570
Issue
iss. Pt 1
Page start
p. 113
Page end
p. 24
Subject
DCN 1: Perception and Action; UMCN 3.2 Cognitive NeurosciencesAbstract
Reflex responses are often less pronounced when they are self-induced, but this question has barely been investigated quantitatively. The issue is particularly relevant for locomotion since it has been shown that reflexes elicited during normal gait are important for the regulation of locomotion. The cortex is thought to be involved in the control of reflexes during gait, but it is unclear whether it plays a role in the modulation of these reflexes during the step cycle. During gait, weak electrical stimulation of the sural nerve elicits reflexes in various leg muscles. Are these reflexes different when subjects themselves trigger the stimuli instead of being randomly released by the computer? Cutaneous reflexes were elicited by sural nerve stimulation in 16 phases of the gait cycle in healthy subjects. The stimuli were triggered either by computer or by the subjects themselves. In 6 out of 7 subjects it was observed that the facilitatory responses in leg muscles were smaller and the suppressive responses were more suppressive following self-generated stimuli. In some muscles such as tibialis anterior (TA) both effects were seen (reduced facilitation at end stance and exaggerated suppression at end swing). In all subjects the modulation of anticipatory influences was muscle specific. In the main group of six subjects, the mean reduction in reflex responses was strongest in the TA (max. 30.7%; mean over 16 phases was 12.5%) and weakest in peroneus longus (PL, max. 10.1%; mean over 16 phases was 2.6%). The observation that facilitation is reduced and suppression enhanced in several muscles is taken as evidence that anticipation of self-induced reflex responses reduces the excitatory drive to motoneurones, for example through presynaptic inhibition of facilitatory reflex pathways.
This item appears in the following Collection(s)
- Academic publications [244262]
- Electronic publications [131202]
- Faculty of Medical Sciences [92892]
- Faculty of Social Sciences [30036]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.