Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors.
Fulltext:
50729.pdf
Embargo:
until further notice
Size:
140.7Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2006Source
Osteoporosis International, 17, 6, (2006), pp. 827-33ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Orthopaedics
Journal title
Osteoporosis International
Volume
vol. 17
Issue
iss. 6
Page start
p. 827
Page end
p. 33
Subject
NCEBP 10: Human Movement & Fatigue; UMCN 4.3: Tissue engineering and reconstructive surgeryAbstract
INTRODUCTION: Osteoporosis (OP) and osteoarthritis (OA) are both common diseases in the elderly, but remarkably seldom coexist. The bone defects that are related to both diseases develop with increasing age, which suggests that they are related to some form of imperfect bone remodeling. Current opinion holds that the bone remodeling process is supervised by bone cells that respond to mechanical stimuli. An imperfect response of bone cells to mechanical stimuli might thus relate to imperfect bone remodeling, which could eventually lead to a lack bone mass and strength, such as in OP patients. MATERIALS: To investigate whether the cellular response to mechanical stress differs between OP and OA patients, we compared the response of bone cells from both groups to fluid shear stress of increasing magnitude. Bone cells from 9 female OP donors (age 60-90 year) and 9 female age-matched OA donors were subjected to pulsating fluid flow (PFF) of low (0.4+/-0.1 Pa at 3 Hz), medium (0.6+/-0.3 Pa at 5 Hz), or high shear stress (1.2+/-0.4 at 9Hz), or were kept under static culture conditions. RESULTS: We found subtle differences in the shear-stress response of the two groups, measured as nitric oxide (NO) and prostaglandin E2 (PGE2) production. The NO-response to shear stress was higher in the OP than the OA cells, while the PGE2-response was higher in the OA cells. CONCLUSIONS: Assuming that NO and PGE2 play a role in cell-cell communication during remodeling, these results suggest that slight differences in mechanotransduction might relate to the opposite bone defects in osteoporosis and osteoarthritis.
This item appears in the following Collection(s)
- Academic publications [246764]
- Electronic publications [134215]
- Faculty of Medical Sciences [93461]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.