Fulltext:
49063.pdf
Embargo:
until further notice
Size:
377.8Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2005Source
Journal of Medical Genetics, 42, 12, (2005), pp. 907-12ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
CMBI
Radboudumc Extern
Human Genetics
Neurology
Former Organization
Bioinformatics (umcn)
Journal title
Journal of Medical Genetics
Volume
vol. 42
Issue
iss. 12
Page start
p. 907
Page end
p. 12
Subject
DCN 1: Perception and Action; DCN 2: Functional Neurogenomics; IGMD 3: Genomic disorders and inherited multi-system disorders; IGMD 8: Mitochondrial medicine; NCMLS 4: Energy and redox metabolism; NCMLS 6: Genetics and epigenetic pathways of disease; UMCN 3.1: Neuromuscular development and genetic disorders; UMCN 5.1: Genetic defects of metabolism; UMCN 5.3: Cellular energy metabolismAbstract
BACKGROUND: Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of alpha-dystroglycan (alpha-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified. OBJECTIVE: To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity. METHODS: A candidate gene approach combined with homozygosity mapping. RESULTS: Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated alpha-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway. CONCLUSIONS: A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of alpha-DG.
This item appears in the following Collection(s)
- Academic publications [243984]
- Electronic publications [130695]
- Faculty of Medical Sciences [92811]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.