Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.

Fulltext:
47862.pdf
Embargo:
until further notice
Size:
1.219Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2005Source
Annals of Biomedical Engineering, 33, 9, (2005), pp. 1238-48ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Periodontology and Biomaterials
Journal title
Annals of Biomedical Engineering
Volume
vol. 33
Issue
iss. 9
Page start
p. 1238
Page end
p. 48
Subject
NCMLS 3: Tissue engineering and pathology; UMCN 4.3: Tissue engineering and reconstructive surgeryAbstract
Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% beta-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.
This item appears in the following Collection(s)
- Academic publications [227248]
- Electronic publications [108577]
- Faculty of Medical Sciences [86732]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.