Supervised self-organizing maps in crystal property and structure prediction

Fulltext:
36528.pdf
Embargo:
until further notice
Size:
493.7Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2007Source
Crystal Growth & Design, 7, 9, (2007), pp. 1738-1745ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Analytical Chemistry
Solid State Chemistry
Journal title
Crystal Growth & Design
Volume
vol. 7
Issue
iss. 9
Page start
p. 1738
Page end
p. 1745
Subject
Molecular MaterialsAbstract
This article shows, the use of supervised self-organizing maps (SOMs) to explore large numbers of experimental or simulated crystal structures and to visualize structure-property relationships. The examples show how powder diffraction patterns together with one or more structural properties, such as cell volume, space group, and lattice energy, are used to determine the positions of the crystal structures in the maps. The weighted cross-correlation criterion is used as the similarity measure for the diffraction patterns. The results show that supervised SOMs offer a better and more interpretable mapping than unsupervised SOMs, which makes exploration of large sets of structures easier and allows for the classification and prediction of properties. Combining diffraction pattern and lattice energy similarity using a SOM outperforms the separate use of those properties and offers a powerful tool for subset selection in polymorph prediction.
This item appears in the following Collection(s)
- Academic publications [234419]
- Electronic publications [117461]
- Faculty of Science [34584]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.