Subject:
|
DCN 2: Functional Neurogenomics Molecular Animal Physiology NCMLS 6: Genetics and epigenetic pathways of disease UMCN 3.2: Cognitive neurosciences |
Organization:
|
Molecular Animal Physiology Psychoneuropharmacology Cognitive Neuroscience |
Former Organization:
|
Medical Physics and Biophysics
|
Abstract:
|
Selectively bred apomorphine susceptible (APO-SUS) rats display a complex behavioral phenotype remarkably similar to that of human neurodevelopmental disorders, such as schizophrenia. We recently found that the APO-SUS rats have only one or two Aph-1b gene copies (I/I and II/II rats, respectively), whereas their phenotypic counterpart has three copies (III/III). Aph-1b is a component of the gamma-secretase enzyme complex that is involved in multiple (neuro)developmental signaling pathways. Nevertheless, surprisingly little is known about gamma-secretase expression during development. Here, we performed a longitudinal quantitative PCR study in embryos and the hippocampus of I/I, II/II and III/III rats, and found gene-dosage dependent differences in Aph-1b, but not Aph-1a, mRNA expression throughout pre- and post-natal development. On the basis of the developmental mRNA profiles, we assigned relative activities to the various Aph-1a and -1b gene promoters. Furthermore, in the three rat lines, we observed both tissue-specific and temporal alterations in gamma-secretase cleavage activity towards one of its best-known substrates, the amyloid-beta precursor protein APP. We conclude that the low levels of Aph-1b mRNA and gamma-secretase activity observed in the I/I and II/II rats during the entire developmental period may well underlie their complex phenotype.
|