Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors.

Fulltext:
32613schalken.pdf
Embargo:
until further notice
Size:
123.8Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2005Source
Genes, Chromosomes & Cancer, 43, 3, (2005), pp. 273-83ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Dermatology
Urology
Human Genetics
Health Evidence
Medical Microbiology
Former Organization
Epidemiology, Biostatistics & HTA
Journal title
Genes, Chromosomes & Cancer
Volume
vol. 43
Issue
iss. 3
Page start
p. 273
Page end
p. 83
Subject
EBP 1: Determinants in Health and Disease; NCMLS 3: Growth and differentiation; NCMLS 6: Genetics and epigenetic pathways of disease; ONCOL 1: Hereditary cancer and cancer-related syndromes; ONCOL 3: Translational research; ONCOL 5: Aetiology, screening and detection; UMCN 1.2: Molecular diagnosis, prognosis and monitoringAbstract
The vast majority of androgen-dependent prostate tumors progress toward incurable, androgen-independent tumors. The identification of androgen-responsive genes, which are still actively transcribed in the tumors of patients who have undergone androgen ablation, may shed light on the molecular mechanisms underlying this phenomenon. To address this question, we chose the Dunning R3327 rat model system, in which the progression from androgen-dependent to -independent tumors is represented by several transplantable prostate-derived tumors. Gene expression profiles were analyzed in normal rat prostates and in the prostates of rats 14 days after castration by use of microarrays containing approximately 5,000 oligonucleotides, together representing more than 4,800 known rat genes. These expression profiles were compared with similarly obtained expression profiles of androgen-dependent and androgen-independent rat prostate tumors. By doing so, a series of known and novel prostate cancer-associated androgen-responsive genes was identified. Within this series, we were able to identify several clusters of genes that are differentially regulated in the various prostate tumors. These genes may serve as (i) novel prognostic identifiers and (ii) novel therapeutic targets.
This item appears in the following Collection(s)
- Academic publications [227088]
- Electronic publications [108488]
- Faculty of Medical Sciences [86606]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.