Enhancing Radiologist Reading Performance by Ordering Screening Mammograms Based on Characteristics That Promote Visual Adaptation.
Fulltext:
311195.pdf
Embargo:
until further notice
Size:
775.1Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2024Source
Radiology, 313, 1, (2024), pp. e240237, article e240237ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Medical Imaging
IQ health
Journal title
Radiology
Volume
vol. 313
Issue
iss. 1
Page start
p. e240237
Subject
IQ health - Radboud University Medical Center; Medical Imaging - Radboud University Medical CenterAbstract
Background Mammographic background characteristics may stimulate human visual adaptation, allowing radiologists to detect abnormalities more effectively. However, it is unclear whether density, or another image characteristic, drives visual adaptation. Purpose To investigate whether screening performance improves when screening mammography examinations are ordered for batch reading according to mammographic characteristics that may promote visual adaptation. Materials and Methods This retrospective multireader multicase study was performed with mammograms obtained between September 2016 and May 2019. The screening examinations, each consisting of four mammograms, were interpreted by 13 radiologists in three distinct orders: randomly, by increasing volumetric breast density (VBD), and based on a self-supervised learning (SSL) encoding (examinations automatically grouped as "looking similar"). An eye tracker recorded radiologists' eye movements during interpretation. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of random-ordered readings were compared with those of VBD- and SSL-ordered readings using mixed-model analysis of variance. Reading time, fixation metrics, and perceived density were compared using Wilcoxon signed-rank tests. Results Mammography examinations (75 with breast cancer, 75 without breast cancer) from 150 women (median age, 55 years [IQR, 50-63]) were read. The examinations ordered by increasing VBD versus randomly had an increased AUC (0.93 [95% CI: 0.91, 0.96] vs 0.92 [95% CI: 0.89, 0.95]; P = .009), without evidence of a difference in specificity (89% [871 of 975] vs 86% [837 of 975], P = .04) and sensitivity (both 81% [794 of 975 vs 788 of 975], P = .78), and a reduced reading time (24.3 vs 27.9 seconds, P < .001), fixation count (47 vs 52, P < .001), and fixation time in malignant regions (3.7 vs 4.6 seconds, P < .001). For SSL-ordered readings, there was no evidence of differences in AUC (0.92 [95% CI: 0.89, 0.95]; P = .70), specificity (84% [820 of 975], P = .37), sensitivity (80% [784 of 975], P = .79), fixation count (54, P = .05), or fixation time in malignant regions (4.6 seconds, P > .99) compared with random-ordered readings. Reading times were significantly higher for SSL-ordered readings compared with random-ordered readings (28.4 seconds, P = .02). Conclusion Screening mammography examinations ordered from low to high VBD improved screening performance while reducing reading and fixation times. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Grimm in this issue.
This item appears in the following Collection(s)
- Academic publications [246936]
- Electronic publications [134293]
- Faculty of Medical Sciences [93487]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.