PRISMA: A novel approach for deriving probabilistic surrogate safety measures for risk evaluation
Fulltext:
297556.pdf
Embargo:
until further notice
Size:
1.063Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2023Author(s)
Number of pages
13 p.
Source
Accident Analysis and Prevention, 192, (2023), article 107273ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
SW OZ DCC AI
Journal title
Accident Analysis and Prevention
Volume
vol. 192
Languages used
English (eng)
Subject
Cognitive artificial intelligenceAbstract
Surrogate Safety Measures (SSMs) are used to express road safety in terms of the safety risk in traffic conflicts. Typically, SSMs rely on assumptions regarding the future evolution of traffic participant trajectories to generate a measure of risk, restricting their applicability to scenarios where these assumptions are valid. In response to this limitation, we present the novel Probabilistic RISk Measure derivAtion (PRISMA) method. The objective of the PRISMA method is to derive SSMs that can be used to calculate in real time the probability of a specific event (e.g., a crash). The PRISMA method adopts a data-driven approach to predict the possible future traffic participant trajectories, thereby reducing the reliance on specific assumptions regarding these trajectories. Since the PRISMA is not bound to specific assumptions, the PRISMA method offers the ability to derive multiple SSMs for various scenarios. The occurrence probability of the specified event is based on simulations and combined with a regression model, this enables our derived SSMs to make real-time risk estimations. To illustrate the PRISMA method, an SSM is derived for risk evaluation during longitudinal traffic interactions. Since there is no known method to objectively estimate risk from first principles, i.e., there is no known risk ground truth, it is very difficult, if not impossible, to objectively compare the relative merits of two SSMs. Instead, we provide a method for benchmarking our derived SSM with respect to expected risk trends. The application of the benchmarking illustrates that the SSM matches the expected risk trends. Whereas the derived SSM shows the potential of the PRISMA method, future work involves applying the approach for other types of traffic conflicts, such as lateral traffic conflicts or interactions with vulnerable road users.
This item appears in the following Collection(s)
- Academic publications [246515]
- Electronic publications [134102]
- Faculty of Social Sciences [30494]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.