An in-silico framework for modeling optimal control of neural systems
Source
Frontiers in Neuroscience, 17, (2023), article 1141884ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
SW OZ DCC AI
Journal title
Frontiers in Neuroscience
Volume
vol. 17
Languages used
English (eng)
Subject
Cognitive artificial intelligenceAbstract
Introduction: Brain-machine interfaces have reached an unprecedented capacity to measure and drive activity in the brain, allowing restoration of impaired sensory, cognitive or motor function. Classical control theory is pushed to its limit when aiming to design control laws that are suitable for large-scale, complex neural systems. This work proposes a scalable, data-driven, unified approach to study brain-machine-environment interaction using established tools from dynamical systems, optimal control theory, and deep learning. Methods: To unify the methodology, we define the environment, neural system, and prosthesis in terms of differential equations with learnable parameters, which effectively reduce to recurrent neural networks in the discrete-time case. Drawing on tools from optimal control, we describe three ways to train the system: Direct optimization of an objective function, oracle-based learning, and reinforcement learning. These approaches are adapted to different assumptions about knowledge of system equations, linearity, differentiability, and observability. Results: We apply the proposed framework to train an in-silico neural system to perform tasks in a linear and a nonlinear environment, namely particle stabilization and pole balancing. After training, this model is perturbed to simulate impairment of sensor and motor function. We show how a prosthetic controller can be trained to restore the behavior of the neural system under increasing levels of perturbation. Discussion: We expect that the proposed framework will enable rapid and flexible synthesis of control algorithms for neural prostheses that reduce the need for in-vivo testing. We further highlight implications for sparse placement of prosthetic sensor and actuator components.
This item appears in the following Collection(s)
- Academic publications [246936]
- Electronic publications [134293]
- Faculty of Social Sciences [30577]
- Open Access publications [107817]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.