Differentiating between Bayesian parameter learning and structure learning based on behavioural and pupil measures
Publication year
2023Number of pages
20 p.
Source
PLoS One, 18, 2, (2023), article e0270619ISSN
Publication type
Article / Letter to editor
Related datasets
Display more detailsDisplay less details
Organization
SW OZ DCC CO
PI Group Predictive Brain
SW OZ DCC SMN
SW OZ DCC AI
Journal title
PLoS One
Volume
vol. 18
Issue
iss. 2
Languages used
English (eng)
Subject
Action, intention, and motor control; Cognitive artificial intelligenceAbstract
Within predictive processing two kinds of learning can be distinguished: parameter learning and structure learning. In Bayesian parameter learning, parameters under a specific generative model are continuously being updated in light of new evidence. However, this learning mechanism cannot explain how new parameters are added to a model. Structure learning, unlike parameter learning, makes structural changes to a generative model by altering its causal connections or adding or removing parameters. Whilst these two types of learning have recently been formally differentiated, they have not been empirically distinguished. The aim of this research was to empirically differentiate between parameter learning and structure learning on the basis of how they affect pupil dilation. Participants took part in a within-subject computer-based learning experiment with two phases. In the first phase, participants had to learn the relationship between cues and target stimuli. In the second phase, they had to learn a conditional change in this relationship. Our results show that the learning dynamics were indeed qualitatively different between the two experimental phases, but in the opposite direction as we originally expected. Participants were learning more gradually in the second phase compared to the first phase. This might imply that participants built multiple models from scratch in the first phase (structure learning) before settling on one of these models. In the second phase, participants possibly just needed to update the probability distribution over the model parameters (parameter learning).
This item appears in the following Collection(s)
- Academic publications [243984]
- Donders Centre for Cognitive Neuroimaging [3983]
- Electronic publications [130695]
- Faculty of Social Sciences [30023]
- Open Access publications [104973]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.