Publication year
2022Source
Virchows Archiv, 480, 1, (2022), pp. 191-209ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Medical Imaging
Pathology
Journal title
Virchows Archiv
Volume
vol. 480
Issue
iss. 1
Page start
p. 191
Page end
p. 209
Subject
Radboudumc 17: Women's cancers RIHS: Radboud Institute for Health Sciences; Pathology - Radboud University Medical CenterAbstract
The convergence of digital pathology and computer vision is increasingly enabling computers to perform tasks performed by humans. As a result, artificial intelligence (AI) is having an astoundingly positive effect on the field of pathology, including breast pathology. Research using machine learning and the development of algorithms that learn patterns from labeled digital data based on "deep learning" neural networks and feature-engineered approaches to analyze histology images have recently provided promising results. Thus far, image analysis and more complex AI-based tools have demonstrated excellent success performing tasks such as the quantification of breast biomarkers and Ki67, mitosis detection, lymph node metastasis recognition, tissue segmentation for diagnosing breast carcinoma, prognostication, computational assessment of tumor-infiltrating lymphocytes, and prediction of molecular expression as well as treatment response and benefit of therapy from routine H&E images. This review critically examines the literature regarding these applications of AI in the area of breast pathology.
This item appears in the following Collection(s)
- Academic publications [242839]
- Faculty of Medical Sciences [92293]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.