Automated COVID-19 Grading With Convolutional Neural Networks in Computed Tomography Scans: A Systematic Comparison
Fulltext:
251973.pdf
Embargo:
until further notice
Size:
2.819Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2022Source
IEEE Transactions on Artificial Intelligence, 3, 2, (2022), pp. 129-138ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Medical Imaging
Journal title
IEEE Transactions on Artificial Intelligence
Volume
vol. 3
Issue
iss. 2
Page start
p. 129
Page end
p. 138
Subject
Radboudumc 12: Sensory disorders DCMN: Donders Center for Medical Neuroscience; Radboudumc 7: Neurodevelopmental disorders DCMN: Donders Center for Medical Neuroscience; Radboudumc 9: Rare cancers RIHS: Radboud Institute for Health Sciences; Medical Imaging - Radboud University Medical CenterAbstract
Amidst the ongoing pandemic, the assessment of computed tomography (CT) images for COVID-19 presence can exceed the workload capacity of radiologists. Several studies addressed this issue by automating COVID-19 classification and grading from CT images with convolutional neural networks (CNNs). Many of these studies reported initial results of algorithms that were assembled from commonly used components. However, the choice of the components of these algorithms was often pragmatic rather than systematic and systems were not compared to each other across papers in a fair manner. We systematically investigated the effectiveness of using 3-D CNNs instead of 2-D CNNs for seven commonly used architectures, including DenseNet, Inception, and ResNet variants. For the architecture that performed best, we furthermore investigated the effect of initializing the network with pretrained weights, providing automatically computed lesion maps as additional network input, and predicting a continuous instead of a categorical output. A 3-D DenseNet-201 with these components achieved an area under the receiver operating characteristic curve of 0.930 on our test set of 105 CT scans and an AUC of 0.919 on a publicly available set of 742 CT scans, a substantial improvement in comparison with a previously published 2-D CNN. This article provides insights into the performance benefits of various components for COVID-19 classification and grading systems. We have created a challenge on grand-challenge.org to allow for a fair comparison between the results of this and future research.
This item appears in the following Collection(s)
- Academic publications [246860]
- Electronic publications [134292]
- Faculty of Medical Sciences [93474]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.