Isolation of multipotent progenitor cells from pleura and pericardium for tracheal tissue engineering purposes
Publication year
2021Source
Journal of Cellular and Molecular Medicine, 25, 23, (2021), pp. 10869-10878ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Cardio Thoracic Surgery
Urology
Molecular Developmental Biology
Journal title
Journal of Cellular and Molecular Medicine
Volume
vol. 25
Issue
iss. 23
Page start
p. 10869
Page end
p. 10878
Subject
Radboudumc 0: Other Research RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 15: Urological cancers RIMLS: Radboud Institute for Molecular Life Sciences; Molecular Developmental BiologyAbstract
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.
This item appears in the following Collection(s)
- Academic publications [229016]
- Electronic publications [111213]
- Faculty of Medical Sciences [87728]
- Faculty of Science [34247]
- Open Access publications [80090]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.