Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology
Publication year
2021Author(s)
Source
Nature Communications, 12, 1, (2021), article 3014ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Internal Medicine
Human Genetics
Journal title
Nature Communications
Volume
vol. 12
Issue
iss. 1
Subject
Radboudumc 4: lnfectious Diseases and Global Health RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 6: Metabolic Disorders RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 7: Neurodevelopmental disorders DCMN: Donders Center for Medical Neuroscience; Human Genetics - Radboud University Medical Center; Internal Medicine - Radboud University Medical CenterAbstract
Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
This item appears in the following Collection(s)
- Academic publications [243984]
- Electronic publications [130695]
- Faculty of Medical Sciences [92811]
- Open Access publications [104973]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.