Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties
Publication year
2021Source
Colloids and Surfaces B-Biointerfaces, 197, (2021), article 111438ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Dentistry
Journal title
Colloids and Surfaces B-Biointerfaces
Volume
vol. 197
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life Sciences; Dentistry - Radboud University Medical CenterAbstract
The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DD(EDA) mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded Hn EM, i.e. HnX were prepared from aqueous polymeric solutions with polyvinyl alcohol (PVA), as a non-ionogenic linear flexible polymeric carrier, and the multifunctional 2-hydroxypropyl- cyclodextrin (HPCD) which acted as a rheological modifier, a stabilizer of Taylor's cone, and a solubilizing agent. A comprehensive characterization of the membranes was carried out through ATR-IR, XRD, and WCA measurements. According to the in vitro hydrolytic and enzymatic degradation and drug release in different aqueous media for two months, the insertion of alkyl pendant grafts and the crosslinking process provided tuneable additional resistance to the whole membrane suitably for the final application of the membranes. Cell culture showed the cytocompatibility and cell proliferation until 7 days. Osteogenic differentiation and mineralization of pre-osteoblastic MC3T3 cells occurred for most of membranes after 35 days as valued by measuring ALP activity (50 nmol 4-np/h/nf DNA) and the deposition of calcium (120-140 μg ml(-1)).
This item appears in the following Collection(s)
- Academic publications [242524]
- Faculty of Medical Sciences [92283]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.