Towards robust and replicable sex differences in the intrinsic brain function of autism
Publication year
2021Source
Molecular Autism, 12, 1, (2021), article 19ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Cognitive Neuroscience
PI Group Statistical Imaging Neuroscience
PI Group Memory & Emotion
Journal title
Molecular Autism
Volume
vol. 12
Issue
iss. 1
Subject
130 000 Cognitive Neurology & Memory; 220 Statistical Imaging Neuroscience; Radboudumc 13: Stress-related disorders DCMN: Donders Center for Medical Neuroscience; Radboudumc 7: Neurodevelopmental disorders DCMN: Donders Center for Medical NeuroscienceAbstract
BACKGROUND: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS: Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.
This item appears in the following Collection(s)
- Academic publications [234412]
- Donders Centre for Cognitive Neuroimaging [3722]
- Electronic publications [117392]
- Faculty of Medical Sciences [89250]
- Open Access publications [84336]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.