A Hierarchical Watershed Model of Fluid Intelligence in Childhood and Adolescence
Publication year
2020Source
Cerebral Cortex, 30, 1, (2020), pp. 339-352ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Cognitive Neuroscience
Journal title
Cerebral Cortex
Volume
vol. 30
Issue
iss. 1
Page start
p. 339
Page end
p. 352
Subject
Radboudumc 13: Stress-related disorders DCMN: Donders Center for Medical NeuroscienceAbstract
Fluid intelligence is the capacity to solve novel problems in the absence of task-specific knowledge and is highly predictive of outcomes like educational attainment and psychopathology. Here, we modeled the neurocognitive architecture of fluid intelligence in two cohorts: the Centre for Attention, Leaning and Memory sample (CALM) (N = 551, aged 5-17 years) and the Enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) (N = 335, aged 6-17 years). We used multivariate structural equation modeling to test a preregistered watershed model of fluid intelligence. This model predicts that white matter contributes to intermediate cognitive phenotypes, like working memory and processing speed, which, in turn, contribute to fluid intelligence. We found that this model performed well for both samples and explained large amounts of variance in fluid intelligence (R2CALM = 51.2%, R2NKI-RS = 78.3%). The relationship between cognitive abilities and white matter differed with age, showing a dip in strength around ages 7-12 years. This age effect may reflect a reorganization of the neurocognitive architecture around pre- and early puberty. Overall, these findings highlight that intelligence is part of a complex hierarchical system of partially independent effects.
This item appears in the following Collection(s)
- Academic publications [229074]
- Electronic publications [111446]
- Faculty of Medical Sciences [87745]
- Open Access publications [80291]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.