3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration
Publication year
2020Source
Science Advances, 6, 33, (2020), article eabb5093ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Biochemistry (UMC)
Journal title
Science Advances
Volume
vol. 6
Issue
iss. 33
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life SciencesAbstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
This item appears in the following Collection(s)
- Academic publications [234419]
- Electronic publications [117392]
- Faculty of Medical Sciences [89250]
- Open Access publications [84338]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.