Fulltext:
225329.pdf
Embargo:
until further notice
Size:
3.071Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2020Source
Biomaterials, 256, (2020), article 120185ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Dentistry
Journal title
Biomaterials
Volume
vol. 256
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life Sciences; Dentistry - Radboud University Medical CenterAbstract
Mandibular reconstruction requires functional and aesthetic repair and is further complicated by contamination from oral and skin flora. Antibiotic-releasing porous space maintainers have been developed for the local release of vancomycin and to promote soft tissue attachment. In this study, mandibular defects in six sheep were inoculated with 10(6) colony forming units of Staphylococcus aureus; three sheep were implanted with unloaded porous space maintainers and three sheep were implanted with vancomycin-loaded space maintainers within the defect site. During the same surgery, 3D-printed in vivo bioreactors containing autograft or xenograft were implanted adjacent to rib periosteum. After 9 weeks, animals were euthanized, and tissues were analyzed. Antibiotic-loaded space maintainers were able to prevent dehiscence of soft tissue overlying the space maintainer, reduce local inflammatory cells, eliminate the persistence of pathogens, and prevent the increase in mandibular size compared to unloaded space maintainers in this sheep model. Animals with an untreated mandibular infection formed bony tissues with greater density and maturity within the distal bioreactors. Additionally, tissues grown in autograft-filled bioreactors had higher compressive moduli and higher maximum screw pull-out forces than xenograft-filled bioreactors. In summary, we demonstrated that antibiotic-releasing space maintainers are an innovative approach to preserve a robust soft tissue pocket while clearing infection, and that local infections can increase local and remote bone growth.
This item appears in the following Collection(s)
- Academic publications [248274]
- Electronic publications [135674]
- Faculty of Medical Sciences [94130]
Upload full text
Use your RU or RadboudUMC credentials to log in with SURFconext to upload a file for processing by the repository team.