A continuous responder algorithm to optimize clinical management of small-cell lung cancer with progastrin-releasing peptide as a simple blood test
Publication year
2020Source
Tumor Biology, 42, 9, (2020), article 1010428320958603ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Pulmonary Diseases
Journal title
Tumor Biology
Volume
vol. 42
Issue
iss. 9
Subject
Radboudumc 9: Rare cancers RIMLS: Radboud Institute for Molecular Life SciencesAbstract
This study aimed to investigate whether changes in progastrin-releasing peptide (ProGRP) levels correlate with treatment response and can be used to optimize clinical management of patients with small-cell lung cancer. Patients with small-cell lung cancer (any stage) receiving chemotherapy were eligible. ProGRP was measured in serum/plasma at baseline and after each chemotherapy cycle using the Elecsys(®) ProGRP assay (Roche Diagnostics). Treatment response was assessed by computed tomography scan. The primary objective was to examine whether changes in ProGRP levels correlated with computed tomography scan results after two cycles of chemotherapy. The prognostic value of ProGRP among patients receiving first-line chemotherapy was also assessed. Overall, 261 patients from six centers were eligible. Among patients with elevated baseline ProGRP (>100 pg/mL), a ProGRP decline after Cycle 2 was associated with nonprogression (area under the curve: 84%; 95% confidence interval: 72.8-95.1; n = 141). ProGRP changes from baseline to end of Cycle 1 were predictive of response, as determined by computed tomography scan 3 weeks later (area under the curve: 87%; 95% confidence interval: 74.1-99.2; n = 137). This was enhanced by repeat measurements, with a 92% area under the curve (95% confidence interval: 85.3-97.8) among patients with ProGRP data after both Cycles 1 and 2 (n = 123); if a patient experienced a ≥25% decline in ProGRP after Cycle 1, and ProGRP remained stable or decreased after Cycle 2, the probability of finding progression on the interim computed tomography scan at the end of Cycle 2 was almost zero (sensitivity: 100%, specificity: 71%). Both ProGRP levels at baseline and at the end of first-line chemotherapy were prognostic; the latter provided a moderately improved hazard ratio of 2.43 (95% confidence interval: 1.33-4.46; n = 110) versus 1.87 (95% confidence interval: 1.04-3.37; n = 216). In summary, for patients with small-cell lung cancer and elevated baseline ProGRP levels, ProGRP may be a simple, reliable, and repeatable tool for monitoring response to chemotherapy and provide valuable prognostic information.
This item appears in the following Collection(s)
- Academic publications [229134]
- Electronic publications [111496]
- Faculty of Medical Sciences [87758]
- Open Access publications [80317]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.