Thermal distribution, physiological effects and toxicities of extracorporeally induced whole-body hyperthermia in a pig model
Publication year
2020Source
Physiological Reports, 8, 4, (2020), article e14366ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Medical Oncology
Intensive Care
Health Evidence
Emergency Medicine
Anesthesiology
Journal title
Physiological Reports
Volume
vol. 8
Issue
iss. 4
Subject
Radboudumc 0: Other Research RIHS: Radboud Institute for Health Sciences; Radboudumc 17: Women's cancers RIHS: Radboud Institute for Health Sciences; Radboudumc 2: Cancer development and immune defence RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 4: lnfectious Diseases and Global Health RIHS: Radboud Institute for Health Sciences; Radboudumc 9: Rare cancers RIHS: Radboud Institute for Health SciencesAbstract
BACKGROUND: Extracorporeally induced whole-body hyperthermia (eWBH) might be a beneficial treatment in cancer patients. Objectives of this pig study were to assess thermal distribution, (patho-)physiological effects, and safety of eWBH with a new WBH device. METHODS: Fourteen healthy adult pigs were anesthetized, mechanically ventilated, and cannulated; 12 were included in the analysis. Blood was heated in 11 pigs (one pig served as control) using a WBH device (Vither Hyperthermia B.V.) containing two separate fluidic circuits and a heat exchanger. Temperature was monitored on nine different sites, including the brain. Core temperature (average of 4 deep probes) was elevated to 42 degrees C for 2 hr. RESULTS: Elevation of core body temperature to 42 degrees C took on average (+/- standard deviation) 38 +/- 8 min. Initially observed temperature spikes diminished after lowering maximal blood temperature to 45 degrees C. Hereafter, brain temperature spikes never exceeded 42.5 degrees C, mean brain temperature was at highest 41.9 degrees C during maintenance. WBH resulted in increased heart rates and decreased mean arterial pressures. The vast amounts of fluids required to counter hypotension tended to be smaller after corticosteroid administration. Hemodialysis was started in three animals (potassium increase prevention in two and hyperkalemia treatment in one). Severe rhabdomyolysis was observed in all pigs (including the control). All animals survived the procedure until planned euthanasia 1, 6, or 24 hr post procedure. CONCLUSION: Fast induction of eWBH with homogenous thermal distribution is feasible in pigs using the Vither WBH device. Severe hemodynamic disturbances, rhabdomyolysis, and hyperkalemia were observed.
This item appears in the following Collection(s)
- Academic publications [227864]
- Electronic publications [107344]
- Faculty of Medical Sciences [86218]
- Open Access publications [76463]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.