Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients
Publication year
2020Author(s)
Source
Brain, 143, 2, (2020), pp. 452-466ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Neurology
Paediatrics
Laboratory Medicine
Human Genetics
Pathology
Journal title
Brain
Volume
vol. 143
Issue
iss. 2
Page start
p. 452
Page end
p. 466
Subject
Radboudumc 0: Other Research DCMN: Donders Center for Medical Neuroscience; Radboudumc 12: Sensory disorders DCMN: Donders Center for Medical Neuroscience; Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical Neuroscience; Radboudumc 6: Metabolic Disorders RIMLS: Radboud Institute for Molecular Life SciencesAbstract
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.
This item appears in the following Collection(s)
- Academic publications [226902]
- Electronic publications [108458]
- Faculty of Medical Sciences [86456]
- Open Access publications [77621]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.