Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe
Publication year
2020Author(s)
Number of pages
30 p.
Source
Elife, 9, (2020), article e53232ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
SW OZ DCC CO
SW OZ DCC SMN
Journal title
Elife
Volume
vol. 9
Languages used
English (eng)
Subject
Action, intention, and motor controlAbstract
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
This item appears in the following Collection(s)
- Academic publications [229196]
- Electronic publications [111648]
- Faculty of Social Sciences [28727]
- Open Access publications [80447]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.