Joint species distribution modelling with the r-package Hmsc
Publication year
2020Author(s)
Publisher
John Wiley & Sons, Ltd
Source
Methods in Ecology and Evolution, 11, 3, (2020), pp. 442-447ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Environmental Science
Journal title
Methods in Ecology and Evolution
Volume
vol. 11
Issue
iss. 3
Page start
p. 442
Page end
p. 447
Subject
Environmental SciencesAbstract
Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio-temporal context of the study, providing predictive insights into community assembly processes from non-manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce Hmsc 3.0, a user-friendly r implementation. We illustrate the use of the package by applying Hmsc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio-temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single-species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how Hmsc 3.0 can be applied to normally distributed data, count data and presence?absence data. The package, along with the extended vignettes, makes JSDM fitting and post-processing easily accessible to ecologists familiar with r.
This item appears in the following Collection(s)
- Academic publications [246326]
- Electronic publications [133968]
- Faculty of Science [37964]
- Open Access publications [107457]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.