Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping
Publication year
2020Source
The Isme Journal, 15, (2020), pp. 673-687ISSN
Annotation
01 januari 2019
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Ecological Microbiology
Journal title
The Isme Journal
Volume
vol. 15
Page start
p. 673
Page end
p. 687
Subject
Ecological MicrobiologyAbstract
Anaerobic ammonium-oxidizing (anammox) bacteria mediate a key step in the biogeochemical nitrogen cycle and have been applied worldwide for the energy-efficient removal of nitrogen from wastewater. However, outside their core energy metabolism, little is known about the metabolic networks driving anammox bacterial anabolism and mixotrophy beyond genome-based predictions. Here, we experimentally resolved the central carbon metabolism of the anammox bacterium Candidatus Kuenenia stuttgartiensis using time-series 13C isotope tracing, metabolomics, and isotopically nonstationary metabolic flux analysis (INST-MFA). Our findings confirm predicted metabolic pathways used for CO2 fixation, central metabolism, and amino acid biosynthesis in K. stuttgartiensis, and reveal several instances where genomic predictions are not supported by in vivo metabolic fluxes. This includes the use of an incomplete oxidative tricarboxylic acid cycle, despite the genome not encoding a known citrate synthase. We also demonstrate that K. stuttgartiensis is able to directly assimilate formate via the Wood-Ljungdahl pathway instead of oxidizing it completetly to CO2 followed by reassimilation. In contrast, our data suggests that acetate is fully oxidized to CO2 via reversal of the Wood-Ljungdahl pathway and partial TCA cycle activity, followed by reassimilation of the produced CO2. Together, these findings highlight the versatility of central carbon metabolism in anammox bacteria and will enable the construction of accurate metabolic models that predict their function in natural and engineered ecosystems.
This item appears in the following Collection(s)
- Academic publications [227248]
- Electronic publications [108577]
- Faculty of Science [34014]
- Open Access publications [77813]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.