Children's scale errors are a natural consequence of learning to associate objects with actions: A computational model

Fulltext:
204347.pdf
Embargo:
until further notice
Size:
1.126Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2019Number of pages
12 p.
Source
Developmental Science, 22, 4, (2019), article e12777ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
SW OZ DCC AI
Journal title
Developmental Science
Volume
vol. 22
Issue
iss. 4
Languages used
English (eng)
Subject
Cognitive artificial intelligenceAbstract
Young children sometimes attempt an action on an object, which is inappropriate because of the object size - they make scale errors. Existing theories suggest that scale errors may result from immaturities in children's action planning system, which might be overpowered by increased complexity of object representations or developing teleofunctional bias. We used computational modelling to emulate children's learning to associate objects with actions and to select appropriate actions, given object shape and size. A computational Developmental Deep Model of Action and Naming (DDMAN) was built on the dual-route theory of action selection, in which actions on objects are selected via a direct (non-semantic or visual) route, or an indirect (semantic) route. As in case of children, DDMAN produced scale errors: the number of errors was high at the beginning of training and decreased linearly but did not disappear completely. Inspection of emerging object-action associations revealed that these were coarsely organized by shape, hence leading DDMAN to initially select actions based on shape rather than size. With experience, DDMAN gradually learned to use size in addition to shape when selecting actions. Overall, our simulations demonstrate that children's scale errors are a natural consequence of learning to associate objects with actions. This article is protected by copyright.
This item appears in the following Collection(s)
- Academic publications [226902]
- Electronic publications [108458]
- Faculty of Social Sciences [28469]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.