Publication year
2019Source
Methods in Molecular Biology, 1834, (2019), pp. 3-27ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Human Genetics
Journal title
Methods in Molecular Biology
Volume
vol. 1834
Page start
p. 3
Page end
p. 27
Subject
Radboudumc 12: Sensory disorders DCMN: Donders Center for Medical NeuroscienceAbstract
Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.
This item appears in the following Collection(s)
- Academic publications [204994]
- Faculty of Medical Sciences [81051]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.