Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP).
Publication year
2001Source
Biochemical Journal, 354, Pt 2, (2001), pp. 259--66ISSN
Related links
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Tumorimmunology
Biochemistry (UMC)
Journal title
Biochemical Journal
Volume
vol. 354
Issue
iss. Pt 2
Page start
p. 259-
Page end
p. 66
Subject
Role of fatty acid-binding proteins, proteoglycans and ion transport in differentiation and pathology; De rol van vetzuurbindende eiwitten, proteoglycanen en iontransport bij differentiatie en pathologieAbstract
Recent advances in the characterization of fatty acid-binding proteins (FABPs) by NMR have enabled various research groups to investigate the function of these proteins in aqueous solution. The binding of fatty acid molecules to FABPs, which proceeds through a portal region on the protein surface, is of particular interest. In the present study we have determined the three-dimensional solution structure of human heart-type FABP by multi-dimensional heteronuclear NMR spectroscopy. Subsequently, in combination with data collected on a F57S mutant we have been able to show that different fatty acids induce distinct conformational states of the protein backbone in this portal region, depending on the chain length of the fatty acid ligand. This indicates that during the binding process the protein accommodates the ligand molecule by a "selected-fit" mechanism. In fact, this behaviour appears to be especially pronounced in the heart-type FABP, possibly due to a more rigid backbone structure compared with other FABPs, as suggested by recent NMR relaxation studies. Thus differences in the dynamic behaviours of these proteins may be the key to understanding the variations in ligand affinity and specificity within the FABP family.
This item appears in the following Collection(s)
- Academic publications [229134]
- Faculty of Medical Sciences [87758]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.