Publication year
2001Source
British Journal of Pharmacology, 134, 3, (2001), pp. 453--62ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Physiology
Journal title
British Journal of Pharmacology
Volume
vol. 134
Issue
iss. 3
Page start
p. 453-
Page end
p. 62
Subject
Regulation of salt and water reabsorption in the renal collecting duct; Regulatie water en zouttransport in de verzamelbuis van de nierAbstract
1. The recent identification of the epithelial Ca(2+) channel, ECaC1, represents a major step forward in our knowledge of renal Ca(2+) handling. ECaC1 constitutes the rate-limiting apical Ca(2+) entry mechanism of active, transcellular Ca(2+) reabsorption. This unique highly selective Ca(2+) channel shares a low but significant homology with transient receptor potential (TRP) channels and vanilloid receptors (VR). 2. We have studied the pharmacological modulation of currents through ECaC1 heterologously expressed in HEK 293 cells. Monovalent cation currents were measured by use of the whole cell patch clamp technique in cells dialysed with 10 mM BAPTA or 10 mM EGTA to prevent the fast Ca(2+) dependent inactivation of ECaC1. 3. Several modulators were tested, including inorganic cations, putative store-operated Ca(2+) entry (SOC) blockers, the vanilloid receptor (VR-1) blocker capsazepine, protein tyrosine kinase blockers, calmodulin antagonists and ruthenium red. 4. Ruthenium red and econazole appeared to be the most effective inhibitors of currents through ECaC1, with IC(50) values of 111 nM and 1.3 microM, respectively, whereas the selective SOC inhibitor, SKF96365, was nearly ineffective. 5. The divalent cation current block profile for ECaC1 is Pb(2+)=Cu(2+) >Zn(2+) >Co(2+) >Fe(2+) with IC(50) values between 1 and approximately 10 microM. 6. In conclusion, ECaC activity is effectively inhibited by various compounds including ruthenium red, antimycotic drugs and divalent cations, which might be useful tools for pharmacological manipulation and several disorders related to Ca(2+) homeostasis could benefit from such developments.
This item appears in the following Collection(s)
- Academic publications [246326]
- Faculty of Medical Sciences [93294]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.