Journal title:
|
Proteins-Structure Function and Bioinformatics
|
Abstract:
|
A method is presented to refine models built by homology by the use of restricted molecular dynamics (MD) techniques. The basic idea behind this method is the use of structure validation software to determine for each residue the likelihood that it is modeled correctly. This information is used to determine constraints and restraints in an MD simulation including explicit solvent molecules, which is used for model refinement. The procedure is based on the idea that residues that the validation software identifies as correctly positioned should be strongly constrained or restrained in the MD simulations, whereas residues that are likely to be positioned wrongly should move freely. Two different protocols are compared: one (applied to CASP3 target T58) using full structural constraints with separate optimization of each short fragment and the other (applied to T47) allowing some freedom using harmonic restraining potentials, with automatic optimization of the whole molecule. Structures along the MD trajectory that scored best in structural checks were selected for the construction of models that appeared to be successful in the CASP3 competition. Model refinement with MD in general leads to a model that is less like the experimental structure (Levitt et al. Nature Struct Biol 1999;6:108-111). Actually, refined T47 was slightly improved compared to the starting model; changes in model T58 led not to further enhancement. After the X-ray structure of the modeled proteins became known, the procedure was evaluated for two targets (T47 and the CASP4 target T111) by comparing a long simulation in water with the experimental target structures. It was found that structural improvements could be obtained on a nanosecond time scale by allowing appropriate freedom in the simulation. Structural checks applied to fast fluctuations do not appear to be informative for the correctness of the structure. However, both a simple hydrogen bond count and a simple compactness measure, if averaged over times of typically 300 ps, correlate well with structural correctness and we suggest that criteria based on these properties may be used in computational folding strategies.
|