Identification of circadian brain photoreceptors mediating photic entrainment of behavioural rhythms in lizards.
Publication year
2003Source
European Journal of Neuroscience, 18, 2, (2003), pp. 364-72ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Biochemistry (UMC)
Journal title
European Journal of Neuroscience
Volume
vol. 18
Issue
iss. 2
Page start
p. 364
Page end
p. 72
Subject
UMCN 3.3: Neurosensory disordersAbstract
We have shown previously that in ruin lizards (Podarcis sicula) the ablation of all known photoreceptive structures (lateral eyes, pineal and parietal eye) in the same individual animal does not prevent entrainment of their circadian locomotor rhythms to light. The present study was aimed at identifying the circadian brain photoreceptors mediating entrainment. For this purpose, we looked for opsin expression in the brain by means of immunocytochemistry. Using anti-cone-opsin antiserum CERN 874 we have localized photoreceptors in the periventricular area of hypothalamus, near the third cerebral ventricle. We also cloned a brain opsin cDNA that, on the basis of the deduced amino acid sequence, appears to belong to the RH2 class of cone-opsins. We named the cloned cone-opsin Ps-RH2. To examine whether brain cone-opsins mediate photic entrainment of circadian locomotor rhythms, we performed post-transcriptional inactivation experiments by injecting an expression eukaryotic vector transcribing the antisense cone-opsin Ps-RH2 mRNA in the third cerebral ventricle of pinealectomized-retinectomized lizards previously entrained to a light-dark (LD) cycle. Injections of the antisense construct abolished photic entrainment of circadian locomotor rhythms of pinealectomized-retinectomized lizards to the LD cycle for 6-9 days. CERN 874 completely failed to label cells within the periventricular area of hypothalamus of brains injected with antisense construct. Thus, abolishment of photic entrainment is due to inactivation of endogenous brain cone-opsins mRNA. The present results demonstrate for the first time in a vertebrate that brain cone-opsins are part of a true circadian brain photoreceptor participating in photic entrainment of behavioural rhythms.
This item appears in the following Collection(s)
- Academic publications [243859]
- Faculty of Medical Sciences [92795]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.