Source
IEEE Transactions on Cognitive and Developmental Systems, 10, 2, (2018), pp. 227-236ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
SW OZ DCC AI
Journal title
IEEE Transactions on Cognitive and Developmental Systems
Volume
vol. 10
Issue
iss. 2
Languages used
English (eng)
Page start
p. 227
Page end
p. 236
Subject
Cognitive artificial intelligence; DI-BCB_DCC_Theme 4: Brain Networks and Neuronal CommunicationAbstract
Being able to learn word meanings across multiple scenes consisting of multiple words and referents (i.e., cross-situationally) is thought to be important for language acquisition. The ability has been studied in infants, children, and adults, and yet there is much debate about the basic storage and retrieval mechanisms that operate during cross-situational word learning. It has been difficult to uncover the learning mechanics in part because the standard experimental paradigm, which presents a few words and objects on each of a series of training trials, measures learning only at the end of training, after several occurrences of each word-object pair. Diverse models are able to match the final level of performance of the standard paradigm, while the rich history and context of the learning trajectories remain obscured. This study examines accuracy and uncertainty over time in a version of the cross-situational learning task in which words are tested throughout training, as well as in a final test. With similar levels of performance to the standard task, we examine how well the online response trajectories match recent hypothesis- and association-based computational models of word learning.
This item appears in the following Collection(s)
- Academic publications [243859]
- Faculty of Social Sciences [30014]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.