Influence of Transition Metal Cationization versus Sodium Cationization and Protonation on the Gas-Phase Tautomeric Conformations and Stability of Uracil: Application to [Ura+Cu](+) and [Ura+Ag]().
Publication year
2017Source
Journal of the American Society for Mass Spectrometry, 28, 11, (2017), pp. 2438-2453ISSN
Annotation
01 november 2017
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
FELIX Molecular Structure and Dynamics
Journal title
Journal of the American Society for Mass Spectrometry
Volume
vol. 28
Issue
iss. 11
Page start
p. 2438
Page end
p. 2453
Subject
Molecular Structure and DynamicsAbstract
The gas-phase conformations of transition metal cation-uracil complexes, [Ura+Cu](+) and [Ura+Ag](+), were examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra were measured over the IR fingerprint and hydrogen-stretching regions. Structures and linear IR spectra of the stable tautomeric conformations of these complexes were initially determined at the B3LYP/6-31G(d) level. The four most stable structures computed were also examined at the B3LYP/def2-TZVPPD level to improve the accuracy of the predicted IR spectra. Two very favorable modes of binding are found for [Ura+Cu](+) and [Ura+Ag](+) that involve O2N3 bidentate binding to the 2-keto-4-hydroxy minor tautomer and O4 monodentate binding to the canonical 2,4-diketo tautomer of Ura. Comparisons between the measured IRMPD and calculated IR spectra enable elucidation of the conformers present in the experiments. These comparisons indicate that both favorable binding modes are represented in the experimental tautomeric conformations of [Ura+Cu](+) and [Ura+Ag](+). B3LYP suggests that Cu(+) exhibits a slight preference for O4 binding, whereas Ag(+) exhibits a slight preference for O2N3 binding. In contrast, MP2 suggests that both Cu(+) and Ag(+) exhibit a more significant preference for O2N3 binding. The relative band intensities suggest that O4 binding conformers comprise a larger portion of the population for [Ura+Ag](+) than [Ura+Cu](+). The dissociation behavior and relative stabilities of the [Ura+M](+) complexes, M(+) = Cu(+), Ag(+), H(+), and Na(+)) are examined via energy-resolved collision-induced dissociation experiments. The IRMPD spectra, dissociation behaviors, and binding preferences of Cu(+) and Ag(+) are compared with previous and present results for those of H(+) and Na(+). Graphical Abstract .
This item appears in the following Collection(s)
- Academic publications [246860]
- Electronic publications [134251]
- Faculty of Science [38055]
- Open Access publications [107774]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.