Fulltext:
177827.pdf
Embargo:
until further notice
Size:
610.5Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2017Source
Biochemical Society Transactions, 45, 3, (2017), pp. 741-750ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Tumorimmunology
Journal title
Biochemical Society Transactions
Volume
vol. 45
Issue
iss. 3
Page start
p. 741
Page end
p. 750
Subject
Radboudumc 2: Cancer development and immune defence RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 4: lnfectious Diseases and Global Health RIMLS: Radboud Institute for Molecular Life Sciences; Tumorimmunology - Radboud University Medical CenterAbstract
To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin-tetraspanin interactions supporting web formation, (3) tetraspanin-partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.
This item appears in the following Collection(s)
- Academic publications [246515]
- Electronic publications [134157]
- Faculty of Medical Sciences [93308]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.