Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

Fulltext:
177586.pdf
Embargo:
until further notice
Size:
2.496Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2017Source
Pharmaceutical Research, 34, 9, (2017), pp. 1970-1983ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Medical Microbiology
Journal title
Pharmaceutical Research
Volume
vol. 34
Issue
iss. 9
Page start
p. 1970
Page end
p. 1983
Subject
Radboudumc 4: lnfectious Diseases and Global Health RIMLS: Radboud Institute for Molecular Life SciencesAbstract
PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. METHODS: GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. RESULTS: CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. CONCLUSION: GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.
This item appears in the following Collection(s)
- Academic publications [227248]
- Electronic publications [108548]
- Faculty of Medical Sciences [86732]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.