Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques
Publication year
2016Source
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 10, (2016), pp. 1613-1623ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Medical Imaging
Paediatrics - OUD tm 2017
Journal title
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume
vol. 63
Issue
iss. 10
Page start
p. 1613
Page end
p. 1623
Subject
Radboudumc 16: Vascular damage RIHS: Radboud Institute for Health Sciences; Radboudumc 9: Rare cancers RIHS: Radboud Institute for Health SciencesAbstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
This item appears in the following Collection(s)
- Academic publications [244084]
- Electronic publications [131085]
- Faculty of Medical Sciences [92872]
- Open Access publications [105129]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.