Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules
Publication year
2016Source
American Journal of Human Genetics, 98, 1, (2016), pp. 149-64ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Human Genetics
CMBI
Dermatology
Journal title
American Journal of Human Genetics
Volume
vol. 98
Issue
iss. 1
Page start
p. 149
Page end
p. 64
Subject
Radboudumc 5: Inflammatory diseases RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 6: Metabolic Disorders RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 7: Neurodevelopmental disorders DCMN: Donders Center for Medical NeuroscienceAbstract
Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.
This item appears in the following Collection(s)
- Academic publications [246515]
- Faculty of Medical Sciences [93308]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.