Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect
Fulltext:
167855.pdf
Embargo:
until further notice
Size:
436.6Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2016Source
Journal of Thrombosis and Haemostasis, 14, 8, (2016), pp. 1549-60ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Neurology
Laboratory Medicine
Journal title
Journal of Thrombosis and Haemostasis
Volume
vol. 14
Issue
iss. 8
Page start
p. 1549
Page end
p. 60
Subject
Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical NeuroscienceAbstract
Essentials We investigated the molecular base of antithrombin deficiency in cases without SERPINC1 defects. 27% of cases presented hypoglycosylation, transient in 62% and not restricted to antithrombin. Variations in genes involved in N-glycosylation underline this phenotype. These results support a new form of thrombophilia. Click here to listen to Dr Huntington's perspective on thrombin inhibition by the serpins SUMMARY: Background Since the discovery of antithrombin deficiency, 50 years ago, few new thrombophilic defects have been identified, all with weaker risk of thrombosis than antithrombin deficiency. Objective To identify new thrombophilic mechanisms. Patients/methods We studied 30 patients with antithrombin deficiency but no defects in the gene encoding this key anticoagulant (SERPINC1). Results A high proportion of these patients (8/30: 27%) had increased hypoglycosylated forms of antithrombin. All N-glycoproteins tested in these patients (alpha1-antitrypsin, FXI and transferrin) had electrophoretic, HPLC and Q-TOF patterns indistinguishable from those of the congenital disorders of glycosylation (rare recessive multisystem disorders). However, all except one had no mental disability. Moreover, intermittent antithrombin deficiency and hypoglycosylation was recorded in five out of these eight patients, all associated with moderate alcohol intake. Genetic analysis, including whole exome sequencing, revealed mutations in different genes involved in the N-glycosylation pathway. Conclusions Our study provides substantial and novel mechanistic insights into two disease processes, with potential implications for diagnosis and clinical care. An aberrant N-glycosylation causing a recessive or transient antithrombin deficiency is a new form of thrombophilia. Our data suggest that congenital disorders of glycosylation are probably underestimated, especially in cases with thrombosis as the main or only clinical manifestation.
This item appears in the following Collection(s)
- Academic publications [243984]
- Electronic publications [130695]
- Faculty of Medical Sciences [92811]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.